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1  Honour School of Mathematics and Statistics  
 
1.1 Units 
 
See the current edition of the Examination Regulations at  
https://examregs.admin.ox.ac.uk for the full regulations governing these examinations. 
The examination conventions can be found on the Canvas course site. 
 
In Part C, 

 each candidate shall offer a minimum of six units and a maximum of eight units 
from the schedule of units for Part C 

 and each candidate shall also offer a dissertation on a statistics project 
(equivalent of 2 units). 

 At least 3 of the units taken by Part C students must be assessed by written 
examination. 

 
At least two units should be from the schedule of ‘Statistics’ units.  
The USMs for the dissertation and the best six units will count for the final classification. 
 
Units from the schedule of ‘Mathematics Department units’ for Part C of the Honour 
School of Mathematics are also available – see Section 3. 
 
This booklet describes the units available in Part C. Information about dissertations/ 
statistics projects will be available on the Department of Statistics Canvas site. 
 
All of the units described in this booklet are “M-level”. 

Students are asked to register for the options they intend to take by the end of week 10, 
Trinity Term 2024 using the Mathematical Institute course management portal.  
https://courses.maths.ox.ac.uk/course/index.php?categoryid=735.  Students may alter 
the options they have registered for after this but it is helpful if their registration is as 
accurate as possible. Students will then be asked to sign up for classes at the start of 
Michaelmas Term 2024. Students who register for a course or courses for which there is 
a quota should consider registering for an additional course (by way of a "reserve 
choice") in case they do not receive a place on the course with the quota.  

Every effort will be made when timetabling lectures to ensure that mathematics lectures 
do not clash. However, because of the large number of options this may sometimes be 
unavoidable.  
 
1.2 Part C courses in future years 
 
In any year, most courses available in Part C that year will normally also be available in 
Part C the following year. However, sometimes new options will be added or existing 
options may cease to run. The list of courses that will be available in Part C in any year 
will be published by the end of the preceding Trinity Term. 
 
 
 
 

https://examregs.admin.ox.ac.uk/
https://courses.maths.ox.ac.uk/course/index.php?categoryid=735
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1.3 Course list by term  
 
The 2024-2025 list of Part C courses by term is: 
 
Michaelmas Term 
 
SC1 Stochastic Models in Mathematical Genetics 
SC2 Probability and Statistics for Network Analysis 
SC6 Graphical Models 
SC9 Probability on Graphs and Lattices 
SC10 Algorithmic Foundations of Learning 
 
Hilary Term 
 
SC4 Advanced Topics in Statistical Machine Learning 
SC5 Advanced Simulation Methods 
SC7 Bayes Methods 
SC8 Topics in Computational Biology 
SC11 Climate Statistics 
C8.4 Probabilistic Combinatorics. 
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2. Statistics Units 
 
2.1 SC1 Stochastic Models in Mathematical Genetics – 16 MT  
 
Level: M-level 
Method of Assessment: written examination 
Weight: Unit 
 
Recommended Prerequisites 
Part A A8 Probability. 
SB3.1 Applied Probability would be helpful. 
 
Aims & Objectives 
The aim of the lectures is to introduce modern stochastic models in mathematical 
population genetics and give examples of real world applications of these models. 
Stochastic and graph theoretic properties of coalescent and genealogical trees are 
studied in the first eight lectures. Diffusion processes and extensions to model additional 
key biological phenomena are studied in the second eight lectures. 
 
Synopsis 
Evolutionary models in Mathematical Genetics:  
The Wright-Fisher model. The Genealogical Markov chain describing the number 
ancestors back in time of a collection of DNA sequences.  
 
The Coalescent process describing the stochastic behaviour of the ancestral tree of a 
collection of DNA sequences. Mutations on ancestral lineages in a coalescent tree. 
Models with a variable population size.  
 
The frequency spectrum and age of a mutation. Ewens’ sampling formula for the 
probability distribution of the allele configuration of DNA sequences in a sample in the 
infinitely-many-alleles model. Hoppe’s urn model for the infinitely-many-alleles model.  
 
The infinitely-many-sites model of mutations on DNA sequences. Gene trees as perfect 
phylogenies describing the mutation history of a sample of DNA sequences. Graph 
theoretic constructions and characterizations of gene trees from DNA sequence 
variation. Gusfield’s construction algorithm of a tree from DNA sequences. Examples of 
gene trees from data.  
 
Modelling biological forces in Population Genetics: Recombination. The effect of 
recombination on genealogies. Detecting recombination events under the infinitely-
many-sites model. Hudson’s algorithm. Haplotype bounds on recombination events. 
Modelling recombination in the Wright-Fisher model. The coalescent process with 
recombination: the ancestral recombination graph. Properties of the ancestral 
recombination graph.  
 
Introduction to diffusion theory. Tracking mutations forward in time in the Wright-Fisher 
model. Modelling the frequency of a neutral mutation in the population via a diffusion 
process limit. The generator of a diffusion process with two allelic types. The probability 
of fixation of a mutation. Genic selection. Extension of results from neutral to selection 
case. Behaviour of selected mutations.  
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Reading 
R. Durrett, Probability Models for DNA Sequence Evolution, Springer, 2008  
A.Etheridge, Some Mathematical Models from Population Genetics. Ecole d’Eté de 
Probabilities de Saint-Flour XXXIX-2009, Lecture Notes in Mathematics, 2012 
W. J. Ewens, Mathematical Population Genetics, 2nd Ed, Springer, 2004  
J. R. Norris, Markov Chains, Cambridge University Press, 1999 
 M. Slatkin and M. Veuille, Modern Developments in Theoretical Population Genetics, 
Oxford Biology, 2002 
S. Tavaré and O. Zeitouni, Lectures on Probability Theory and Statistics, Ecole d’Eté de 
Probabilities de Saint-Flour XXXI - 2001, Lecture Notes in Mathematics 1837, Springer, 
2004 
 
 
2.2 SC2 Probability and Statistics for Network Analysis – 16 MT 
 
Level: M-level 
Method of Assessment: Written examination 
Weight:  Unit 
 
For this course, 2 lectures and 2 intercollegiate classes are replaced by 2 practical 
classes. (The total time for this course is the same as for other Part C courses.) 
 
Recommended prerequisites 
Part A A8 Probability and A9 Statistics  
 
Aims and Objectives 
Many data come in the form of networks, for example friendship data and protein-protein 
interaction data. As the data usually cannot be modelled using simple independence 
assumptions, their statistical analysis provides many challenges. The course will give an 
introduction to the main problems and the main statistical techniques used in this field. 
The techniques are applicable to a wide range of complex problems. The statistical 
analysis benefits from insights which stem from probabilistic modelling, and the course 
will combine both aspects. 
 
Synopsis 
Exploratory analysis of networks. The need for network summaries. Degree distribution, 
clustering coefficient, shortest path length. Motifs. 
 
Probabilistic models: Bernoulli random graphs, geometric random graphs, preferential 
attachment models, small world networks, inhomogeneous random graphs, exponential 
random graphs. 
 
Small subgraphs: Stein’s method for normal and Poisson approximation. Branching 
process approximations, threshold behaviour, shortest path between two vertices.  
 
Statistical analysis of networks: Sampling from networks. Parameter estimation for 
models. Inferring edges in networks. Network comparison. A brief look at community 
detection. 
 
Reading 
R. Durrett, Random Graph Dynamics, Cambridge University Press,2007 
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E.D Kolaczyk and G. Csádi, Statistical Analysis of Network Data with R, Springer, 2014 
M. Newman, Networks. Oxford University Press 
 
 
2.3 SC4 Advanced Topics in Statistical Machine Learning – 16 HT 
 
Level: M-level 
Methods of Assessment: written examination. 
Weight: Unit 
 
Recommended prerequisites 
The course requires a good level of mathematical maturity. Students are expected to be 
familiar with core concepts in statistics (regression models, bias-variance tradeoff, 
Bayesian inference), probability (multivariate distributions, conditioning) and linear 
algebra (matrix-vector operations, eigenvalues and eigenvectors). Previous exposure to 
machine learning (empirical risk minimisation, dimensionality reduction, overfitting, 
regularisation) is highly recommended. 
Students would also benefit from being familiar with the material covered in the following 
courses offered in the Statistics department:  SB2.1 (formerly SB2a) Foundations of 
Statistical Inference and in SB2.2 (formerly SB2b) Statistical Machine Learning. 
 
Aims and Objectives 
Machine learning is widely used across the sciences, engineering and society, to 
construct methods for identifying interesting patterns and predicting accurately from 
large datasets. 
This course introduces several widely used machine learning techniques and describes 
their underpinning statistical principles and properties. The course studies both 
unsupervised and supervised learning and several advanced and state-of-the-art topics 
are covered in detail. The course will also cover computational considerations of 
machine learning algorithms and how they can scale to large datasets. 
 
Synopsis 
Empirical risk minimisation. Loss functions. Generalization. Over- and underfitting. 
Regularisation. 
 
Support vector machines. 
 
Kernel methods and reproducing kernel Hilbert spaces. Representer theorem. 
Representation of probabilities in RKHS. 
 
Probabilistic and Bayesian machine learning: Fundamentals of the Bayesian approach. 
 
Gaussian processes. Bayesian optimisation. 
 
Deep learning: Neural networks. Computation graphs. Automatic differentiation. 
Stochastic gradient descent. 
 
Variational inference. Latent variable models. 
 
Deep generative models. Variational auto-encoders. 
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Software 
Knowledge of Python is not required for this course, but some examples may be done in 
Python. Students interested in learning Python are referred to the following free 
University IT online course, which should ideally be taken before the beginning of this 
course: https://skills.it.ox.ac.uk/whats-on#/course/LY046 

 
Reading 
C. Bishop, Pattern Recognition and Machine Learning, Springer,2007 
K. Murphy, Machine Learning: a Probabilistic Perspective, MIT Press, 2012 
 
Further Reading 
T. Hastie, R. Tibshirani, J Friedman, Elements of Statistical Learning, Springer, 2009 
Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 
2011, http://scikit-learn.org/stable/tutorial/ 
 
 
2.4 SC5 Advanced Simulation Methods - 16 HT  
 
Level: M-level 
Methods of Assessment: This course is assessed by written examination. 
Weight: Unit 
 
Recommended Prerequisites 
The course requires a good level of mathematical maturity as well as some statistical 
intuition and background knowledge to motivate the course. Students are expected to be 
familiar with core concepts from probability (conditional probability, conditional densities, 
properties of conditional expectations, basic inequalities such as Markov's, Chebyshev's 
and Cauchy-Schwarz’s, modes of convergence), basic limit theorems from probability in 
particular the strong law of large numbers and the central limit theorem, Markov chains, 
aperiodicity, irreducibility, stationary distributions, reversibility and convergence. Most of 
these concepts are covered in courses offered in the Statistics department, in particular 
prelims probability, A8 probability and SB3.1 (formerly SB3a) Applied Probability.  
Familiarity with basic Monte Carlo methods will be helpful, as for example covered in 
A12 Simulation and Statistical Programming.  
Some familiarity with concepts from Bayesian inference such as posterior distributions 
will be useful in order to understand the motivation behind the material of the course. 
 
Aims and Objectives 
The aim of the lectures is to introduce modern simulation methods. 
This course concentrates on Markov chain Monte Carlo (MCMC) methods and 
Sequential Monte Carlo (SMC) methods. Examples of applications of these methods to 
complex inference problems will be given. 
 
Synopsis 
Classical methods: inversion, rejection, composition. 
 
Importance sampling.    
 
MCMC methods:  elements of discrete-time general state-space Markov chains theory, 
Metropolis-Hastings algorithm. 

https://skills.it.ox.ac.uk/whats-on#/course/LY046
http://scikit-learn.org/stable/tutorial/
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Advanced MCMC methods: Gibbs sampling, slice sampling, tempering/annealing, 
Hamiltonian (or Hybrid) Monte Carlo, pseudo-marginal MCMC. 
 
Sequential importance sampling. 
 
SMC methods: nonlinear filtering. 
 
Reading 
C.P. Robert and G. Casella, Monte Carlo Statistical Methods, 2nd edition, Springer-
Verlag, 2004 
 
Further reading 
J.S. Liu, Monte Carlo Strategies in Scientific Computing, Springer-Verlag, 2001 
 
 
2.5 SC6 Graphical Models – 16 MT 
 
Level: M-level 
Methods of Assessment: This course is assessed by written examination. 
Weight: Unit 
 
Recommended Prerequisites 
The basics of Markov chains (in particular, conditional independence) from Part A 
Probability is assumed. Likelihood theory, contingency tables, and likelihood-ratio tests 
are also important; this is covered in Part A Statistics. Knowledge of exponential families 
and linear models (as covered in Part B Foundations of Statistical Inference and Applied 
Statistics) would be useful, but is not essential. 
 
Aims and Objectives 
This course will give an overview of the use of graphical models as a tool for statistical 
inference. Graphical models relate the structure of a graph to the structure of a 
multivariate probability distribution, usually via a factorization of the distribution or 
conditional independence constraints. This has two broad uses: first, conditional 
independence can provide vast savings in computational effort, both in terms of the 
representation of large multivariate models and in performing inference with them; this 
makes graphical models very popular for dealing with big data problems. Second, 
conditional independence can be used as a tool to discover hidden structure in data, 
such as that relating to the direction of causality or to unobserved processes. As such, 
graphical models are widely used as causal models in genetics, medicine, epidemiology, 
statistical physics, economics, the social sciences and elsewhere. 
 
Students will develop an understanding of the use of conditional independence and 
graphical structures for dealing with multivariate statistical models. They will appreciate 
how this is applied to causal modelling, and to computation in large-scale statistical 
problems. 
 
Synopsis 

 Independence, conditional independence, graphoid axioms. 
 Exponential families, mean and canonical parameterizations, moment matching; 

contingency tables, log-linear models. 
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 Undirected graphs, cliques, paths; factorization and Markov properties, 
Hammersley-Clifford Theorem (statement only). 

 Trees, cycles, chords, decomposability, triangulation, running intersection 
property. Maximum likelihood in decomposable models, iterative proportional 
fitting. 

 The multivariate Gaussian distribution and Gaussian graphical models. 
 Directed acyclic graphs, factorization. Paths, d-separation, moralization. 

Ancestral sets and sub-models. Decomposable models as intersection of 
directed and undirected models. 

 Running intersection property, Junction trees; message passing, computation of 
marginal and conditional probabilities, introduction of evidence. 

 Causal models, linear structural equations, interventions, the trek rule. 
 Average causal effects, adjustment, valid adjustment sets, forbidden projection, 

and optimal adjustment. 
 
Reading 
1. S.L. Lauritzen, Graphical Models, Oxford University Press, 1996. 
2. D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques, 
MIT Press, 2009. 
3. J. Pearl, Causality, third edition, Cambridge, 2013. 
4. M.J. Wainwright and M.I. Jordan, Graphical Models, Exponential Families, and 
Variational Inference, Foundations and Trends in Machine Learning, 2008. 
(available for free at https://people.eecs.berkeley.edu/ ~ wainwrig/Papers/WaiJor08_FTML.pdf) 
5. A. Agresti. Categorical Data Analysis, 3rd Edition, John Wiley & Sons, 2013. 
 
 
2.6 SC7 Bayes Methods – 16 HT 
 
Level: M-level 
Method of Assessment: Written examination 
Weight:  Unit 
 
Recommended prerequisites 
SB2.1 (formerly SB2a) Foundations of Statistical Inference is desirable, of which 6 
lectures on Bayesian inference, decision theory and hypothesis testing with loss 
functions are assumed knowledge.  A12 Simulation and Statistical Programming 
desirable. 
 
Synopsis 
Theory: Decision-theoretic foundations, Savage axioms. Prior elicitation, 
exchangeability. Bayesian Non-Parametric (BNP) methods, the Dirichlet process and the 
Chinese Restaurant Process. Asymptotics, and information criteria. 
 
Computational methods: Bayesian inference via MCMC; Estimation of marginal 
likelihood; Approximate Bayesian Computation and intractable likelihoods; reversible 
jump MCMC. 
 
Case Studies: extend understanding of prior elicitation, BNP methods and asymptotics 
through a small number of substantial examples. Examples to further illustrate building 
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statistical models, model choice, model averaging and model assessment, and the use 
of Monte Carlo methods for inference. 
 
Reading 
C.P. Robert,The Bayesian Choice: From Decision-Theoretic Foundations to 
Computational Implementation, 2nd edition, Springer, 2001 
 
Further Reading 
A. Gelman et al, Bayesian Data Analysis,  3rd edition, Boca Raton Florida: CRC Press, 
2014 
P Hoff, A First Course in Bayesian Statistical Methods, Springer, 2010 
DeGroot, Morris H., Optimal Statistical Decisions. Wiley Classics Library. 2004. 
 
2.7 SC8 Topics in Computational Biology – 16 HT 
 
Level: M-level  
Method of Assessment:  Mini-project 
Weight: Unit  
 
Recommended Prerequisites:  
The lectures attempt to be self-contained but clearly knowledge algorithms, 
combinatorics and probability theory (A8 Probability and SB3.1 Applied Probability) 
would be a help. The course requires a good level of mathematical maturity.  
 
Aims & Objectives  
Modern molecular biology generates large amounts of data, such as sequences, 
structures and expression data, that needs different forms of statistical analysis and 
modelling to be properly interpreted. This course focuses on four topics within this vast 
area: Molecular Dynamics, Molecule Enumeration, Comparative Biology and Overview 
of Computational Biology and Computational Neurosciences.   
 
Synopsis:  
Modelling the Biosphere - The biosphere is a well-defined physical system that can be 
described at different levels of coarse-grained. At the most detailed level, it is an 
extremely complicated system with an energy in- and outflux, a physical system 
consisting of atmosphere, ocean and crust and in excess of 10 million species. But even 
at the very coarsest level major insights can be obtained and the greenhouse effect was 
pretty precisely described 130 years ago based on the simplest of models. Climate 
Change and Weather Forecasting make models of immense economic importance and 
are experiencing major development, both in terms of data collection, parameterisation 
and computational power. Like in epidemics, forecasting and assessment of forecasting 
is important. Statistical testing and causal analysis of biospheric changes are also 
receiving major attention. Describing scenarios of Climate Change is of interest to all 
and the foundation of political and economic decision making. 
 
Advanced Sequence Analysis - Sequences are the classical golden type of data within 
Bioinformatics/Computational Biology with a 50+ year history.  However, there are plenty 
of open problems that have arisen either due to the explosion of data, incorporation of 
other information or the rise of Machine Learning. In this sub-topic we go through 
sequence models including insertion-deletions, substitutions and how to infer 
parameters, relationships and alignments. 

https://www.dropbox.com/scl/fi/4fks3hrwvwgj2ttpeujux/Biological-Sequence-Analysis.docx?rlkey=uumkl0hn3riv6cu7wp337ezqk&dl=0
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Computational Models of Pattern and Shape - Classically, Multicellular Organisms 
were identified by their Patterns and Shapes. This has over the last 1-2 centuries been 
vastly enhanced by molecular/cellular characterisations. This has been a triumph of 
modern science. The dynamics and evolution of molecular/cellular components and 
processes has well-developed models associated, but as you proceed to higher levels 
within an individual, such as tissue and organs and eventually the complete organism, 
very major challenges remain. Within this sub-topic we will attempt to survey the main 
Patterns/Shapes observed in Multicellular Organisms, the models that have been used 
to describe and explain them. Finally, we will discuss attempts to go from Genome to 
Patterns/Shapes. This subtopic will be one of the main challenges for the biosciences in 
the coming decades. 
 
Computational Neuroscience - Computational Neuroscience is in massive growth, but 
has a history going back to the 1940s with publications such as McCullogh and Pitts 
(1943) paper on neural networks. The present progress is driven by progress on three 
fronts: (i) experimental data on brains, nerve systems and individual neurons, (ii) 
increased success in designing artificial neural networks with an increasing variety in 
architectures with applications in Deep Learning/AI and (iii) the ability to simulate very 
complex models as models of biological neural networks.  
Neuroscience and Computational Neuroscience are arguably the most complex areas of 
present science it could take many decades for the most fundamental questions to be 
answered. The origin(s) of Neurosystems (and general likelihood/unlikelihood) is still an 
open question.  The definition of consciousness is not only a philosophical question but 
of practical importance. 
 
The exact plan for lectures is: 
  
W1 The Basics of the Biosphere 
W1 Modelling the Dynamics of the Biosphere 
W2 Model Properties and Statistics 
W2 Climate Change 
 
W3 Models of Sequence Evolution 
W3 Alignment 
W4 Phylogenetics 
W4 Pattern Search in Sequences 
 
W5 Biological & Artificial Neurons 
W5 Modelling Small Neural Networks 
W6 Large Scale Brain Modelling 
W6 Evolution of of the Brain 
 
W7 The Classical Models of Patterns and Shapes 
W7 Patterns and Shapes in Animals 
W8 Patterns and Shapes in Plants 
W8 Functions from Genome to Pattern and Shape 
 
 
 

https://www.dropbox.com/scl/fi/s3h3gydaugxxj4427qs4a/Computational-Neuroscience-2024.docx?rlkey=7tudr6vk0napyk5vv4i8iqzfo&dl=0
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2.8 SC9 Probability on Graphs and Lattices – 16 MT 

Level: M-level 
Method of Assessment: Written examination Weight: Unit  

Recommended Prerequisites  

Discrete and continuous time Markov processes on countable state space, as covered 
for example in Part A A8 Probability and Part B SB3.1 Applied Probability.  

Aims and Objectives  

The aim is to introduce fundamental probabilistic and combinatorial tools, as well as key 
models, in the theory of discrete disordered systems. We will examine the large-scale 
behaviour of systems containing many interacting components, subject to some random 
noise. Models of this type have a wealth of applications in statistical physics, biology and 
beyond, and we will see several key examples in the course. Many of the tools we will 
discuss are also of independent theoretical interest, and have far reaching applications. 
For example, we will study the amount of time it takes for a random system to reach its 
stationary distribution (mixing time). This concept is also important in many statistical 
applications, such as studying the run time of MCMC methods.  

Synopsis  

 Uniform spanning trees, loop-erased random walks, Wilson's algorithm, the 
Aldous-Broder algorithm.  

 Percolation, phase transitions in Z^d, specific tools in Z^2.  
 Ising model, random-cluster model and other models from statistical mechanics 

(e.g. Potts model, hard-core model).  
 Glauber dynamics, mixing times, couplings.  

Reading 
G. Grimmett, Probability on graphs: random processes on graphs and lattices, 

Cambridge University Press, 2010; 2017 (2nd edition). 
B. Bollobás, O. Riordan, Percolation, Cambridge University Press, 2006. 
T. Liggett, Continuous time Markov processes: an introduction, American 
Mathematical Society, 2010. 
D. A. Levin, Y. Peres, E. L. Wilmer, Markov chains and mixing times, American 
Mathematical Society, 2009. 
H. Duminil-Copin, Introduction to Bernoulli percolation. Lecture notes available 
online at https://www.ihes.fr/~duminil/publi/2017percolation.pdf.  
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2.9 SC10 Algorithmic Foundations of Learning – 16 MT 
 
Level: M-level 
Method of Assessment: Written examination 
Weight:  Unit 
 
Recommended Prerequisites 
The course requires a good level of mathematical maturity. Students are expected to 
have working knowledge of core concepts in probability theory (basic properties of 
probabilities, such as union bounds, and of conditional expectations, such as the tower 
property or law of total expectations; basic inequalities, such as Markov’s and Jensen’s), 
statistics (confidence intervals, hypothesis testing), and linear algebra (matrix-vector 
operations, eigenvalues and eigenvectors; basic inequalities, such as Cauchy-Schwarz’s 
and Hölder’s). Previous exposure to machine learning (empirical risk minimisation, 
overfitting, regularisation) is recommended. 
Students would benefit from being familiar with the material covered in SB2.1 (formerly 
SB2a) Foundations of Statistical Inference (in particular, Decision Theory) and in SB2.2 
(formerly SB2b) Statistical Machine Learning. 
 
Aims and objectives 
The course is meant to provide a rigorous theoretical account of the main ideas 
underlying machine learning, and to offer a principled framework to understand the 
algorithmic paradigms being used, along with non-asymptotic methods for the study of 
random structures in high-dimensional probability, statistics, and optimisation. 
 
Synopsis 
 

 Statistical learning frameworks for prediction, estimation and online learning. 
 Probability:  

o Maximal inequalities. 
o Rademacher and Gaussian complexities. 
o Elements of VC theory. 
o Covering and packing numbers. 
o Chaining. 
o Concentration inequalities. 

 Statistics:  
o Bayes decision rules. 
o Empirical risk minimisation. Error decomposition: generalisation, 

optimisation, and approximation. 
o Learning via uniform convergence, margin bounds, and algorithmic 

stability. 
o Regularisation: explicit (constraints and penalisation) and implicit 

(algorithmic). 
o Convex loss surrogates. 
o Slow and fast rates. 
o Minimax lower bounds and hypothesis testing. 

 Optimisation:  
o Elements of convex theory. 
o Oracle model. Gradient descent. Mirror descent. 
o Stochastic oracle model. Stochastic gradient descent. Stochastic mirror 

descent. Variance reduction techniques. 
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o Implicit Bias. 
o Online optimisation. 

 Examples  
o Linear predictors, including Boosting. 
o Non-linear predictors, including Support Vector Machines and Neural 

Networks. 
o High-dimensional estimators for sparse and low-rank problems, including 

Lasso. 
o Online learning, including multi-armed bandit problems, reinforcement 

learning and algorithms. 
 
Reading 
 

 Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: 
From Theory to Algorithms. Cambridge University Press. 2014 

 Sébastien Bubeck. Convex Optimization: Algorithms and Complexity. 
Foundations and Trends in Machine Learning. 2015 

 Ramon van Handel. Probability in High Dimension. Lecture notes available online 
at http://www.princeton.edu/~rvan/APC550.pdf. 2016 

 Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Book available online at 
https://tor-lattimore.com/downloads/book/book.pdf. 2019. 

 Martin J. Wainwright. High-Dimensional Statistics. A Non-Asymptotic Viewpoint. 
Cambridge University Press. 2019. 

 
3.0 SC11 Climate Statistics – 16 HT 
 
Level: M-level 
Method of Assessment: Written examination 
Weight:  Unit 
 
Recommended Prerequisites: 
 
Students will need a grounding in probability and statistical theory at least on the level of 
A8 Probability and A9 Statistics, and will need most of the material of SB1.1 Applied 
Statistics. There will be heavy use of Linear Algebra, but not assuming proficiency 
beyond the level of Oxford’s first-year courses. It will be helpful for students to have 
some familiarity with Fourier series, also on the level of the first-year course Fourier 
series and PDEs), and simulation methods for statistical inference (on the level of SB1.2 
Computational Statistics). 

Aims and Objectives  
 
This course aims to teach the fundamentals of some statistical concepts and techniques 
that are relevant for understanding and carrying out research in climate science. It will 
teach about the varieties of climate data and show how they may be analysed with these 
techniques, as well as teaching some of the core concepts of climate science, and show 
students how improvements in climate science have been linked to improvements in 
statistical methodology. 
 
The topics covered are all core statistical methods that are not at all or hardly covered in 
our current curriculum. The topics are: time series, multivariate analysis, multivariate 
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decomposition methods (PCA, CCA, related issues), and extreme values, plus a lecture 
on the design and interpretation of large simulation models. 
 
Techniques of data analysis in R will be taught, and students will be expected to engage 
with issues of data analysis. The problem sheets will include computing questions, which 
may in principle be done in any programming language, though solutions will be 
provided only in R. They will not be examined on writing code, but on the interpretation 
of computational outputs. 
 
Synopsis 
 
Introduction: History and background of climate science; the varieties of climate data 
and climate models. 
Time series: 
• Exploratory Data analysis and nonparametric smoothing; 
• ARIMA models in the time domain; 
• Spectral methods; 
• Introduction to wavelets. Basic concepts of time-frequency representations, ap- 
plication of Morlet wavelets. 
Multivariate analysis: 
• MANOVA and MANCOVA; 
• Testing with Wilks Λ and Hotelling T² 
• Multivariate regression. 
Multivariate decomposition methods: 
• Principal Components Analysis; 
• Canonical Correlations Analysis; 
• Model selection with Mutual Information Criterion and cross validation; 
• Predictable Components Analysis. 
Extreme values: Basic theory of extreme value distributions, convergence theorems 
(without detailed proofs), inference for the generalised extreme value distribution. 
Computational climate models: Problems of inference from large spatio-temporal 
simulation models. 
 
Reading 
Statistical Methods for Climate Scientists, Timothy M. Delsole and Michael K. Tippett. 
Time Series Analysis and its Applications, Robert H. Shumway and David S. Stoffer. 
 
Further Reading: 
Climate Change 2021: The Physical Science Basis, The Intergovernmental Panel on 
Climate Change. 
Multivariate Time Series Analysis in Climate and Environmental Research, Zhihua 
Zhang. 
Extreme Value Theory with Applications to Natural Hazards, ed. Nicolas Bousquet 
and Pietro Bernardera. 
Statistical Analysis of Climate Series: Analyzing, plotting, modelling, and pre- 
dicting with R, Helmut Pruscha. 
The Geometry of Multivariate Statistics, Thomas D. Wickens. 
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3.1 C8.4 Probabilistic Combinatorics - 16 HT   

 
Level: M-level  
Method of Assessment: Written examination. 
Weight: Unit  
 
Recommended Prerequisites: 
B8.5 Graph Theory and A8: Probability. C8.3 Combinatorics is not as essential 
prerequisite for this course, though it is a natural companion for it. 
 
Overview 
Probabilistic combinatorics is a very active field of mathematics, with connections to 
other areas such as computer science and statistical physics. Probabilistic methods are 
essential for the study of random discrete structures and for the analysis of algorithms, 
but they can also provide a powerful and beautiful approach for answering deterministic 
questions. The aim of this course is to introduce some fundamental probabilistic tools 
and present a few applications. 
 
Learning Outcomes 
The student will have developed an appreciation of probabilistic methods in discrete 
mathematics. 
 
Synopsis 
First-moment method, with applications to Ramsey numbers, and to graphs of high girth 
and high chromatic number. 
Second-moment method, threshold functions for random graphs. 
Lovász Local Lemma, with applications to two-colourings of hypergraphs, and to 
Ramsey numbers. 
Chernoff bounds, concentration of measure, Janson's inequality. 
Branching processes and the phase transition in random graphs. 
Clique and chromatic numbers of random graphs. 
 
Reading 
N. Alon and J.H. Spencer, The Probabilistic Method, 3rd  edition, Wiley, 2008 
 
Further Reading: 
B. Bollobás, Random Graphs, 2nd edition, Cambridge University Press, 2001 
M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, B. Reed, ed., Probabilistic Methods for 
Algorithmic Discrete Mathematics, Springer, 1998 
S. Janson, T. Luczak and A. Rucinski, Random Graphs, John Wiley and Sons, 2000 
M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms and 
Probabilistic Analysis, Cambridge University Press, New York (NY), 2005 
M. Molloy and B. Reed, Graph Colouring and the Probabilistic Method, Springer, 2002 
R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, 
1995 
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4  Mathematics units  
 
The Mathematics units that students may take are drawn from Part C of the Honour 
School of Mathematics. For full details of these units, see the Syllabus and Synopses for 
Part C of the Honour School of Mathematics, which are available on the web at  
https://courses.maths.ox.ac.uk/course/index.php?categoryid=735 
 
 
The Mathematics units that are available are as follows:  

C1.1 Model Theory 16 MT 
C1.2 Godel's Incompleteness Theorems 16 HT 
C1.3 Analytic Topology 16 MT 
C1.4 Axiomatic Set Theory 16 HT 
C2.2 Homological Algebra 16 MT 
C2.3 Representation Theory of Semisimple Lie Algebras 16 HT 
C2.4 Infinite Groups 16 MT 
C2.5 Non-Commutative Rings 16 HT 
C2.6 Introduction to Schemes 16 HT 
C2.7 Category Theory 16 MT 
C3.1 Algebraic Topology 16 MT 
C3.2 Geometric Group Theory 16 HT 
C3.3 Differentiable Manifolds 16 MT 
C3.4 Algebraic Geometry 16 MT 
C3.5 Lie Groups 16 MT 
C3.6 Modular Forms 16 MT 
C3.7 Elliptic Curves 16 HT 
C3.8 Analytic Number Theory 16 HT 
C3.9 Computational Algebraic Topology 16 HT 
C3.10 Additive Combinatorics 16 MT 
C3.11 Riemannian Geometry 16 HT 
C3.12 Low-Dimensional Topology and Knot Theory 16 HT 
C4.1 Further Functional Analysis 16 MT 
C4.3 Functional Analytic Methods for PDEs 16 MT 
C4.4 Hyperbolic Equations 16 HT 
C4.6 Fixed Point Methods for Nonlinear PDEs 16 HT 
C4.9 
C5.1 

Optimal Transport and Partial Differential Equations 
Solid Mechanics 

16 MT 
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C5.2 Elasticity and Plasticity 16 MT 
C5.4 Networks 16 MT 
C5.5 Perturbation Methods 16 MT 
C5.6 Applied Complex Variables 16 HT 
C5.7 Topics in Fluid Mechanics 16 MT 
C5.11 Mathematical Geoscience 16 MT 
C5.12 Mathematical Physiology 16 MT 
C6.1 Numerical Linear Algebra 16 MT 
C6.2 Continuous Optimisation 16 HT 
C6.5 Theories of Deep Learning 16 MT 
C7.1 Theoretical Physics 24MT/16HT 
C7.4 Introduction to Quantum Information 16 HT 
C7.5 General Relativity I 16 MT 
C7.6 General Relativity II 16 HT 
C7.7 Random Matrix Theory 16 HT 
C8.1 Stochastic Differential Equations 16 MT 
C8.2 Stochastic Analysis and PDEs 16 HT 
C8.3 Combinatorics 16 MT 
C8.4 
C8.6 

Probabilistic Combinatorics (see page 13) 
Limit Theorems and Large Deviations in Probability 

16 HT 
16 HT 

C8.7 Optimal Control 16 HT 

 

https://courses.maths.ox.ac.uk/course/index.php?categoryid=735

